Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative Transcriptome Analysis Revealed Genes Regulated by Histone Acetylation and Genes Related to Sex Hormone Biosynthesis in Phytophthora infestans.

Identifieur interne : 000267 ( Main/Exploration ); précédent : 000266; suivant : 000268

Comparative Transcriptome Analysis Revealed Genes Regulated by Histone Acetylation and Genes Related to Sex Hormone Biosynthesis in Phytophthora infestans.

Auteurs : Xiao-Wen Wang [République populaire de Chine] ; Jia-Lu Lv [République populaire de Chine] ; Ya-Ru Shi [République populaire de Chine] ; Li-Yun Guo [République populaire de Chine]

Source :

RBID : pubmed:32508886

Abstract

Late blight caused by Phytophthora infestans, is one of the most devastating diseases of potato, and was responsible for the death of millions of people during the Irish Potato Famine in the nineteenth century. Phytophthora infestans is a heterothallic oomycete that typically requires two compatible types (mating types), A1 and A2, to complete sexual reproduction (i.e., oospore production). Oospores have critical effects on disease epidemiology because they serve as the primary inoculum in subsequent growing seasons. The sexual reproduction of Phytophthora species is regulated by α hormones. In previous studies, we proved that transformants in which selected histone deacetylase (HDAC) genes are silenced exhibit abnormal hormone production. In the current study, we compared the transcriptomes of HDAC-silenced and wild-type strains to explore the genes regulated by HDAC and the genes involved in sex hormone biosynthesis in Phytophthora species. A total of 14,423 transcripts of unigenes were identified in the wild-type strain, the HDAC family-silenced transformant (HDST), and the HDAC7-silenced transformant (H7ST). After comparing the intergroup gene expression levels, 1,612 unigenes were identified as differentially expressed among these strains. The expression levels of 16 differentially expressed genes (DEGs) were validated by quantitative real-time PCR. The functional annotation of the DEGs by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that HDACs affect the expression of genes related to metabolic and biosynthetic processes, RNA processing, translation, ribosome biogenesis, cellular structural constituents, RNA binding, and protein binding. Moreover, HDAC7 specifically influences the transcription of genes associated with transport, methylation, mitochondria, organelle inner membranes, receptors and transporters, and hydrolase activities. We also identified 18 candidate genes related to α hormones biosynthesis, including a gene encoding the NF-Y transcription factor (PITG_10861). The overexpression of PITG_10861 increased the production of hormone α2. The results of this study revealed P. infestans genes affected by histone acetylation. The data presented herein provide useful inputs for future research on the epigenetic mechanisms and mating behaviors of Phytophthora species.

DOI: 10.3389/fgene.2020.00508
PubMed: 32508886
PubMed Central: PMC7253629


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative Transcriptome Analysis Revealed Genes Regulated by Histone Acetylation and Genes Related to Sex Hormone Biosynthesis in
<i>Phytophthora infestans</i>
.</title>
<author>
<name sortKey="Wang, Xiao Wen" sort="Wang, Xiao Wen" uniqKey="Wang X" first="Xiao-Wen" last="Wang">Xiao-Wen Wang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lv, Jia Lu" sort="Lv, Jia Lu" uniqKey="Lv J" first="Jia-Lu" last="Lv">Jia-Lu Lv</name>
<affiliation wicri:level="3">
<nlm:affiliation>Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shi, Ya Ru" sort="Shi, Ya Ru" uniqKey="Shi Y" first="Ya-Ru" last="Shi">Ya-Ru Shi</name>
<affiliation wicri:level="3">
<nlm:affiliation>Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Guo, Li Yun" sort="Guo, Li Yun" uniqKey="Guo L" first="Li-Yun" last="Guo">Li-Yun Guo</name>
<affiliation wicri:level="3">
<nlm:affiliation>Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32508886</idno>
<idno type="pmid">32508886</idno>
<idno type="doi">10.3389/fgene.2020.00508</idno>
<idno type="pmc">PMC7253629</idno>
<idno type="wicri:Area/Main/Corpus">000175</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000175</idno>
<idno type="wicri:Area/Main/Curation">000175</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000175</idno>
<idno type="wicri:Area/Main/Exploration">000175</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative Transcriptome Analysis Revealed Genes Regulated by Histone Acetylation and Genes Related to Sex Hormone Biosynthesis in
<i>Phytophthora infestans</i>
.</title>
<author>
<name sortKey="Wang, Xiao Wen" sort="Wang, Xiao Wen" uniqKey="Wang X" first="Xiao-Wen" last="Wang">Xiao-Wen Wang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lv, Jia Lu" sort="Lv, Jia Lu" uniqKey="Lv J" first="Jia-Lu" last="Lv">Jia-Lu Lv</name>
<affiliation wicri:level="3">
<nlm:affiliation>Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shi, Ya Ru" sort="Shi, Ya Ru" uniqKey="Shi Y" first="Ya-Ru" last="Shi">Ya-Ru Shi</name>
<affiliation wicri:level="3">
<nlm:affiliation>Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Guo, Li Yun" sort="Guo, Li Yun" uniqKey="Guo L" first="Li-Yun" last="Guo">Li-Yun Guo</name>
<affiliation wicri:level="3">
<nlm:affiliation>Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in genetics</title>
<idno type="ISSN">1664-8021</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Late blight caused by
<i>Phytophthora infestans</i>
, is one of the most devastating diseases of potato, and was responsible for the death of millions of people during the Irish Potato Famine in the nineteenth century.
<i>Phytophthora infestans</i>
is a heterothallic oomycete that typically requires two compatible types (mating types), A1 and A2, to complete sexual reproduction (i.e., oospore production). Oospores have critical effects on disease epidemiology because they serve as the primary inoculum in subsequent growing seasons. The sexual reproduction of
<i>Phytophthora</i>
species is regulated by α hormones. In previous studies, we proved that transformants in which selected histone deacetylase (
<i>HDAC</i>
) genes are silenced exhibit abnormal hormone production. In the current study, we compared the transcriptomes of
<i>HDAC</i>
-silenced and wild-type strains to explore the genes regulated by HDAC and the genes involved in sex hormone biosynthesis in
<i>Phytophthora</i>
species. A total of 14,423 transcripts of unigenes were identified in the wild-type strain, the
<i>HDAC</i>
family-silenced transformant (HDST), and the
<i>HDAC7</i>
-silenced transformant (H7ST). After comparing the intergroup gene expression levels, 1,612 unigenes were identified as differentially expressed among these strains. The expression levels of 16 differentially expressed genes (DEGs) were validated by quantitative real-time PCR. The functional annotation of the DEGs by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that HDACs affect the expression of genes related to metabolic and biosynthetic processes, RNA processing, translation, ribosome biogenesis, cellular structural constituents, RNA binding, and protein binding. Moreover, HDAC7 specifically influences the transcription of genes associated with transport, methylation, mitochondria, organelle inner membranes, receptors and transporters, and hydrolase activities. We also identified 18 candidate genes related to α hormones biosynthesis, including a gene encoding the NF-Y transcription factor (
<i>PITG_10861</i>
). The overexpression of
<i>PITG_10861</i>
increased the production of hormone α2. The results of this study revealed
<i>P. infestans</i>
genes affected by histone acetylation. The data presented herein provide useful inputs for future research on the epigenetic mechanisms and mating behaviors of
<i>Phytophthora</i>
species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32508886</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-8021</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in genetics</Title>
<ISOAbbreviation>Front Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative Transcriptome Analysis Revealed Genes Regulated by Histone Acetylation and Genes Related to Sex Hormone Biosynthesis in
<i>Phytophthora infestans</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>508</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fgene.2020.00508</ELocationID>
<Abstract>
<AbstractText>Late blight caused by
<i>Phytophthora infestans</i>
, is one of the most devastating diseases of potato, and was responsible for the death of millions of people during the Irish Potato Famine in the nineteenth century.
<i>Phytophthora infestans</i>
is a heterothallic oomycete that typically requires two compatible types (mating types), A1 and A2, to complete sexual reproduction (i.e., oospore production). Oospores have critical effects on disease epidemiology because they serve as the primary inoculum in subsequent growing seasons. The sexual reproduction of
<i>Phytophthora</i>
species is regulated by α hormones. In previous studies, we proved that transformants in which selected histone deacetylase (
<i>HDAC</i>
) genes are silenced exhibit abnormal hormone production. In the current study, we compared the transcriptomes of
<i>HDAC</i>
-silenced and wild-type strains to explore the genes regulated by HDAC and the genes involved in sex hormone biosynthesis in
<i>Phytophthora</i>
species. A total of 14,423 transcripts of unigenes were identified in the wild-type strain, the
<i>HDAC</i>
family-silenced transformant (HDST), and the
<i>HDAC7</i>
-silenced transformant (H7ST). After comparing the intergroup gene expression levels, 1,612 unigenes were identified as differentially expressed among these strains. The expression levels of 16 differentially expressed genes (DEGs) were validated by quantitative real-time PCR. The functional annotation of the DEGs by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that HDACs affect the expression of genes related to metabolic and biosynthetic processes, RNA processing, translation, ribosome biogenesis, cellular structural constituents, RNA binding, and protein binding. Moreover, HDAC7 specifically influences the transcription of genes associated with transport, methylation, mitochondria, organelle inner membranes, receptors and transporters, and hydrolase activities. We also identified 18 candidate genes related to α hormones biosynthesis, including a gene encoding the NF-Y transcription factor (
<i>PITG_10861</i>
). The overexpression of
<i>PITG_10861</i>
increased the production of hormone α2. The results of this study revealed
<i>P. infestans</i>
genes affected by histone acetylation. The data presented herein provide useful inputs for future research on the epigenetic mechanisms and mating behaviors of
<i>Phytophthora</i>
species.</AbstractText>
<CopyrightInformation>Copyright © 2020 Wang, Lv, Shi and Guo.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Xiao-Wen</ForeName>
<Initials>XW</Initials>
<AffiliationInfo>
<Affiliation>Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lv</LastName>
<ForeName>Jia-Lu</ForeName>
<Initials>JL</Initials>
<AffiliationInfo>
<Affiliation>Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Ya-Ru</ForeName>
<Initials>YR</Initials>
<AffiliationInfo>
<Affiliation>Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Li-Yun</ForeName>
<Initials>LY</Initials>
<AffiliationInfo>
<Affiliation>Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Genet</MedlineTA>
<NlmUniqueID>101560621</NlmUniqueID>
<ISSNLinking>1664-8021</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">P450</Keyword>
<Keyword MajorTopicYN="N">RNA-seq</Keyword>
<Keyword MajorTopicYN="N">epigenetic mechanisms</Keyword>
<Keyword MajorTopicYN="N">oomycetes</Keyword>
<Keyword MajorTopicYN="N">oospores</Keyword>
<Keyword MajorTopicYN="N">transcription factors</Keyword>
<Keyword MajorTopicYN="N">α hormones</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>04</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32508886</ArticleId>
<ArticleId IdType="doi">10.3389/fgene.2020.00508</ArticleId>
<ArticleId IdType="pmc">PMC7253629</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem Cell Biol. 2001;79(3):243-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11467738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 1;26(1):139-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19910308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 1996 Apr;6(2):176-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8722174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Apr 04;9(4):e92086</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24704821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2013 Oct;54(10):2745-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23881913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Eukaryot Microbiol. 2008 Mar-Apr;55(2):103-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18318863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Nov 16;17(1):927</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27852223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Jan 15;31(2):166-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25260700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2011 Jul 24;7(9):591-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21785427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Feb 09;8:142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28232841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2010 Oct;100(10):997-1006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20839935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15507-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12438651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2018 Jan;30(1):153-166</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29298835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta Gene Regul Mech. 2017 May;1860(5):598-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27815195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 May;28(5):511-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20436464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Jul;7(7):1015-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7640522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 May;90(3):520-534</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28207974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):22008-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19959665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Nov;33(11):2890-2898</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27512113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Zool. 2012 Oct 04;9(1):25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23035888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 1;313(5791):1261-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16946064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(2):R14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20132535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1964 May;51:786-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14172992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 2003 Aug;17(8):1470-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2017 Apr 3;27(7):981-991</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28318979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 1999 Oct;16(5):565-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10584331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 3;290(5493):972-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11062127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1828</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Dec 14;276(50):47733-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11602581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1991 Nov-Dec;4(6):602-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1804404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jan 16;273(3):1349-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9430668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2017 Feb 13;10(2):260-273</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27876642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2000 Dec;28(6):785-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11171208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Oct 1;21(19):3787-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15817693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2003 Mar;983:84-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12724214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Jan 5;268(1):305-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8416938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013 Apr 25;14(4):R36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23618408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2014 Dec 5;455(1-2):3-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25194808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Parasitol. 1998 Jan;28(1):11-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9504331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Eukaryot Microbiol. 2005 Sep-Oct;52(5):399-451</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16248873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2018 Nov;120:9-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30130575</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wang, Xiao Wen" sort="Wang, Xiao Wen" uniqKey="Wang X" first="Xiao-Wen" last="Wang">Xiao-Wen Wang</name>
</noRegion>
<name sortKey="Guo, Li Yun" sort="Guo, Li Yun" uniqKey="Guo L" first="Li-Yun" last="Guo">Li-Yun Guo</name>
<name sortKey="Lv, Jia Lu" sort="Lv, Jia Lu" uniqKey="Lv J" first="Jia-Lu" last="Lv">Jia-Lu Lv</name>
<name sortKey="Shi, Ya Ru" sort="Shi, Ya Ru" uniqKey="Shi Y" first="Ya-Ru" last="Shi">Ya-Ru Shi</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000267 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000267 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32508886
   |texte=   Comparative Transcriptome Analysis Revealed Genes Regulated by Histone Acetylation and Genes Related to Sex Hormone Biosynthesis in Phytophthora infestans.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32508886" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024